Fixdepth ac9 pnb.m
Revision as of 15:16, 5 August 2010 by 128.111.101.185 (talk) (Created page with '<pre> % FIXDEPTH_AC9.M % 29 SEP 97, 04 JUN 2000 % John Ubante, SRW % Input: stripped mer, ac9 files [time depth] % Output: returns scale and offset of regression of ac9 on mer…')
% FIXDEPTH_AC9.M % 29 SEP 97, 04 JUN 2000 % John Ubante, SRW % Input: stripped mer, ac9 files [time depth] % Output: returns scale and offset of regression of ac9 on mer % steps_ac9$cruisename: % [startindex, X, Y, endindex, X, Y, avedepth, avetime] % depthoffset_$cruisename: [scale offset] % Assumptions: you are in a $cruisename/acmpc directory % Purpose: to find values that will align stupid ac9 % values to less stupid mer values % Calls: {shrink,xnr,elimexp,jexcise,combine} % Maintain: {filename, columnarraylist, disp_text} % Example: fixdepth_ac9 % Notes: % 06/2000 Doesn't account for instrument position on cage. % Changed to function, pass arrays retrieve from mat file. % function [scale,offset,matrix]=fixdepth_ac9(mer,ac9) % declare local variables mat_in_flag=-1.0e+40; flag=-9.9e+35; matrixnull=[]; matrix=matrixnull; yesno=2; ctr=0; matrixoffset=0; matrixbrand='mer'; numsteps=[]; xmax=0; % get cruisename pwdd = pwd; indslash = find(pwdd(1,:)=='/'); cruisename = pwdd(1,indslash(1,size(indslash,2)-1)+1:indslash(1,size(indslash,2))-1); clear indslash pwdd % load mer and ac9 data %load mat_in.depth; % $$$ % separate mer and ac9 data % $$$ indflag=find(mat_in(:,1)==mat_in_flag); % $$$ mer=mat_in(1:indflag-1,:); % $$$ ac9=mat_in(indflag+1:size(mat_in,1),:); % $$$ clear flag mat_in indflag % check for sign on depth and % make positive if mean(mer(:,2))<0 mer(:,2)=-mer(:,2); end % end if if mean(ac9(:,2))<0 ac9(:,2)=-ac9(:,2); end % end if % check for validity of data if size(mer,2)~=2 disp('Your mer data is not in 2 column format'); end if size(ac9,2)~=2 disp('Your ac9 data is not in 2 column format') end % begin step interval loop dataset=mer; while(yesno) ctr=ctr+1; % if first step of data ask for number % of step intervals if ctr==1 % plot data real big fig=figure; set (gcf,'units','inches', 'pos',[2.5 2 8 5]) plot(dataset(:,1),dataset(:,2)) set(gca,'ydir','rev') titlestr=['Depth vs. Index in ',matrixbrand,' data of ',cruisename]; title(titlestr); grid on; disp(' ') disp('A whole step is defined as a step preceeded and followed by sloped data.') disp('Count the bottom step only if both plots display a leading slope.') numsteps(yesno)=input('Count the whole steps enter the value: '); disp('Select the boundaries of your first interval.') else disp('Select the boundaries of your next interval.') end % end if % get zoom points [x,y]=ginput(2); % zoom in if y(1)<y(2) if x(1)<x(2) axis([x(1),x(2),y(1),y(2)]) else axis([x(2),x(1),y(1),y(2)]) end else if x(1)<x(2) axis([x(1),x(2),y(2),y(1)]) else axis([x(2),x(1),y(2),y(1)]) end % end if end % end if % if y(1) > y(2) % axis([x(1),x(2),y(2),y(1)]); % else % axis([x,y]); % end hold on; grid off; plot(dataset(:,1),dataset(:,2),'ro'); titlestr=['Zoom of step interval #',num2str(ctr),' of ',cruisename]; title(titlestr); plot([x(1), x(2)], [0, 0], 'g-.'); hold off; % get start and end points of step interval disp('click on start and finish of step interval') [x,y]=ginput(2); % convert x(:) to indices for i=1:2 find(x(i)<=dataset(:,1)); xind(i)=ans(1); end % find interval's averages aved=mean(dataset(xind(1):xind(2),2)); avet=mean(dataset(xind(1):xind(2),1)); % add step interval data to matrix %matrix=[matrix;x(1),dataset(xind(1),:),x(2),dataset(xind(2),:),aved,avet]; matrix=[matrix;xind(1),dataset(xind(1),:),xind(2),dataset(xind(2),:),aved,avet]; % plot dataset real big with % already checked step intervals plot(dataset(:,1),dataset(:,2),'g') set(gca,'ydir','rev') titlestr=['Depth vs. Index in ',matrixbrand,' data of ',cruisename]; title(titlestr) hold on % loop to plot done step intervals for i=matrixoffset+1:size(matrix,1), plot(dataset(matrix(i,1):matrix(i,4),1),dataset(matrix(i,1):matrix(i,4),2),'m') end % end for loop clear i plot(matrix(matrixoffset+1:size(matrix,1),2),matrix(matrixoffset+1:size(matrix,1),3),'ro') plot(matrix(matrixoffset+1:size(matrix,1),5),matrix(matrixoffset+1:size(matrix,1),6),'ro') grid on; % after numsteps intervals, ask if points ok if ctr==numsteps(yesno) titlestr=['Selected steps in ',matrixbrand,' of ',cruisename]; title(titlestr); done=input('Are these points ok? ','s'); % if points ok, exit loop if (done=='y'|done=='Y') % eval(['save steps_ac9' cruisename '.dat matrix -ascii']); disp('You RULE!!'); yesno=yesno-1; dataset=ac9; matrixnull=matrix; ctr=0; matrixoffset=size(matrix,1); matrixbrand='ac9'; grid on set (gcf, 'pos',[0.9 5 5.5 5]) else matrix=matrixnull; ctr=0; end % end if end % end if end % end while loop clear yesno titlestr aved avet ctr done fig matrixnull matrixoffset x y dataset clear matrixbrand temp=numsteps(1); numsteps(1)=numsteps(2); numsteps(2)=temp; clear temp grid on set (gcf, 'pos',[6.5 5 5.5 5]) hold off % DIAGNOSTIC PLOT: superimpose all step intervals from both datasets on to one plot. % The x axis will represent index_end - index_start. The y axis will be depth. % Because of the different sample rates between the two instruments, rescale the % x axis for the ac9 to match its corresponding mer step interval. DAMN!!! % FINISH LATER figb=figure; set(gca,'ydir','rev') % set up plot % begin looping through each line of matrix dataset=mer; for i=1:numsteps(1) hold on x=dataset(matrix(i,1):matrix(i,4),1)-dataset(matrix(i,1),1); if max(x)> xmax xmax=max(x); end % end if y=dataset(matrix(i,1):matrix(i,4),2)-dataset(matrix(i,1),2); plot(x,y,'ro') plot(x,y,'g') hold off end % end for hold on plot([0 xmax],[0 0],'w--') hold off clear xmax done=input('Are these steps ok? ','s'); if (done=='y'|done=='Y') close(figb) clear figb else disp('re-run by typing "fixdepth_ac9" at the prompt'); return%break; end % end if % DO LATER: if numsteps(1)~=numsteps(2) then remove the steps in the cruise % with more steps until the number of steps are same, ensuring that only steps % without corresponding steps are eliminated. % DO NOW: Find offset and scale for ac9 data [depthave timeave] dt_mer=matrix(1:numsteps(1),7:8); dt_ac9=matrix(numsteps(1)+1:sum(numsteps),7:8); [p,S]=polyfit(dt_mer(:,1),dt_ac9(:,1),1); % eval(['save scaleoffset' cruisename '.dat p -ascii']); scale=p(1); offset=p(2); r=corrcoef(dt_mer(:,1)',dt_ac9(:,1)') sprintf('YOUR SCALE _IS_: %3.3e',scale) sprintf('YOUR OFFSET _IS_: %3.3e',offset) plot(dt_mer(:,1),dt_ac9(:,1),'o'); hold on plot(dt_mer(:,1),polyval(p,dt_mer(:,1)),'k') ax=axis; axis([min(ax(1),ax(3)) max(ax(2),ax(4)) min(ax(1),ax(3)) max(ax(2),ax(4))]); return