BscalcE angQ
Jump to navigation
Jump to search
function valaccume = bscalcE_angQ(string,depscale,depint,infile) %Created by Erik Stassinos 3/2012 %This function uses a robust regression algorithm to calculate %regression line, its stats, and Ed(-0) %historically input arguments have been(-r 1ed488 # # infile) %The numbers for the depth window were picked to give the best regression %for light availability in Plumes and Blumes proc. List of params is in %/home/data65/pb/PRR/SOFT prr_params. % -r 1ed412 1 12 % -r 1ed443 1 12 % -r 1ed490 1 12 % -r 1ed510 1 12 % -r 1ed555 1 12 % -r 1ed665 1 10 % -r 1lu412 1 12 % -r 1lu443 1 12 % -r 1lu490 1 12 % -r 1lu510 1 12 % -r 1lu555 1 12 % -r 1lu665 1 10 %==Get the cast params=== %check if up of downcast %get stuff from castid matrix %count number of derived params %channels ={'1Ed412','1Ed443','1Ed490','1Ed510','1Ed555','1Ed665','1Lu412','1Lu443','1Lu490','1Lu510','1Lu5551','1Lu665'} %scale = [1,1,1,1,1,1,1,1,1,1,1,1]; %interval = [12,12,12,12,12,10,12,12,12,12,12,10] %s = struct('channel',channels,'scale',scale,'interval',interval) %s(L).channel,s(L).scale,s(L).interval infile string [rowindex,time_atindex,depth_atindex] = index1(infile); infp = fopen(infile,'r'); dpcnt = 0; while feof(infp) ~= 1 ln = fgets(infp); if strncmp(ln,'<data>',6) ==1 break end if strncmp(ln,'<derived_parameters>',20) ==1 dpcnt = dpcnt+1; end end ct =0; frewind(infp); while feof(infp) ~=1 %used when making new list_ac9 tu = fgets(infp); ct = ct+1;%counts number lines end %==End of get cast params== %======================================================================== %==Check if done before== %return boolean holder if bscal was run before %make sure it was binned frewind(infp); donebf = 'n'; binned = 'n'; while ~feof(infp) ln = fgets(infp); if (strncmp(ln,'bscalc',6)) ==1 donebf ='y'; break end if strncmp(ln,'bin_1.0_1depth',14) ==1 binned = 'y'; end end % % % if binned == 'n' % % % disp('file is not binned') commented 11/15/2013 % % % return % % % end %==End check if done before== %======================================================================== %==Find index for parameter== %if can't be found, abort linecounter =1; frewind(infp); %for i = 1:ct %check for header indexes while ~feof(infp) checkline = fgets(infp); if strncmp(checkline,'<sampled_parameters>',20) ==1 startparam = linecounter; end if strncmp(checkline,'<derived_parameters>',20) ==1 blankind = linecounter; end if strncmp(checkline,'<data>',6) == 1 dataind = linecounter; endparam = linecounter; end if strncmp(checkline,'<filters_used>',14) ==1 filterind = linecounter; end linecounter = linecounter +1; end ext = 0; i=1; %for i = 1:ct%size(varargin,2) was for pulling multiple locations frewind(infp); %make the data file dfile = strcat('temp',infile); dfd = fopen(dfile,'W+'); for linc = 1:ct lllc = fgets(infp); if linc > dataind fprintf(dfd,lllc); end if linc == filterind -1 break end end frewind(infp); fclose(dfd); % return %end make datafile %========================== %master loop for all channels %========================== for count = 1:ct varcheck = fgets(infp); vari = string; %<=========== if strncmp('0Depth',varcheck,6) ==1 %changed 12-3-12 dep = count - startparam; end if strncmp('EdZPitch',varcheck,8) ==1 %changed 1-14-14 pitch = count - startparam; end if strncmp('EdZRoll',varcheck,7) ==1 %changed 1-14-14 roll = count - startparam; end if strncmp('LuZDepth',varcheck,8) ==1 %changed 6-26-13 dep = count - startparam; end if strncmp(varcheck,'<derived_parameters>',20) ==1; ext =1; end if strncmp(varcheck,vari,length(vari)) ==1 pull(i) = count - startparam; i = i+1; end end %end %==End of find index== %======================================================================== %==Read all data== %load depth into a sepparate variable %get size of data field %datafilepref = strrep(infile(1),'b','binmat'); just changed %datafile = strcat(datafilepref,infile(2:end)); just changed 5-10-2012 datafile = dfile; m = load(datafile,'.ASC'); depth = m(:,dep); pitch_a = m(:,pitch); roll_a = m(:,roll); %check if up or downcast if mean(depth(end-5:end)) < mean(depth(1:5)) m = flipud(m); %upcast matrix depth = flipud(depth); end %==End read all data %======================================================================== %==Do the meat, calculate K== %qualifiers %delta needs to be less than depscale %if delta>= abs(depint) winplus =i (the deepest value for depth, input to %function) start = 0; data = m(:,pull(1)); winminus =-1; winplus =-1; allvals = []; valaccume = []; %filterout =[]; for g = 1:size(m,1) % changed from length(m) 9-18-2012 delta = m(g,dep); if delta < -9.0E35 continue end if winminus == -1 if data(g) ~= -9.9E35 && delta >= depscale winminus = g; end end if winplus ==-1 if delta >= abs(depint) winplus = g; else continue end end %===check if window is good pts = 1; if winminus == -1 || winplus == -1 %==== added 9-18-2012 to deal with crappy casts where entire channel is flagged ES disp('something wrong with the data') data(pts) = -9.9E35; format SHORT %changed 1-3-2013 allvals = [allvals; 'n = ',num2str(-9.9E35),' b0 = ', num2str(-9.9E35),' b1 = ', num2str(-9.9E35),' min = ', num2str(-9.9E35),' max = ', num2str(-9.9E35),' mean = ', num2str(-9.9E35),' stdDev = ', num2str(-9.9E35),' var = ', num2str(-9.9E35),' uncertainty = ', num2str(-9.9E35),' abdev = ', num2str(-9.9E35)]; valaccume = [valaccume;allvals]; %changed 1-3-2013 return %continue 1-3-2013 end for z = winminus:winplus if data(z) == -9.9E35 || depth(z) == -9.9E35 || data(z) <= 0 || pitch_a(z) >=10 || roll_a(z) >= 10 % if pitch_a(z) >=10 || roll_a(z) >= 10 % pitch_a(z) % roll_a(z) % pause % end continue else goodpts(pts,:) = z; end pts = pts + 1; end pts = length(goodpts); if pts <2 disp('error need more pts to calculate') end x = depth(goodpts); y = log(data(goodpts)); %y_L = log(data(goodpts)); n = size(x,1); plot((y),-x); xlabel('channel'); ylabel('depth (m)'); abdev = 0; a = 0; b = 0; %winplus %winminus [a,b,abdev] = medfit(x,y,pts,a,b,abdev); %do fitting of datapoints % B = robustfit(x,y) %fitresult = fit((x),(y),'poly1') intcp = exp(a); slp = exp(b); stdval = exp(std(y)); minval = exp(min(y)); maxval = exp(max(y)); meann = exp(mean(y)); syb = 0; sy2 =0; yht = []; lt2 =0; sx2 =0; for lt = 1:pts%length(y) syb = syb+y(lt); %sum of the y sy2 = sy2 + y(lt)*y(lt);%sum of y squared sx2 = sx2 + x(lt)*x(lt); end for lt2=1:length(y) yht(lt2) = a + (b*x(lt2)); end lt2=0; xb =0; SumS =0; for lt2 =1:pts%length(y) SumS = SumS + (y(lt2) - yht(lt2))^2; xb = xb + (x(lt2) - mean(x))^2; end SumS = SumS/(pts -2); Sbo = sqrt(SumS*(sx2/(pts*xb))); varr = exp(log(stdval)^2); clear SumS tstatistic = tval((100+95)*.005,n); unc = exp(tstatistic*Sbo); allvals = [allvals; 'n = ',num2str(n),' b0 = ', num2str(intcp),' b1 = ', num2str(slp),' min = ', num2str(minval),' max = ', num2str(maxval),' mean = ', num2str(meann),' stdDev = ', num2str(stdval),' var = ', num2str(varr),' uncertainty = ', num2str(unc),' abdev = ', num2str(abdev)]; %allvals2 = ['n = ',num2str(n),' b0 = ', num2str(slp),' b1 = ', num2str(intcp),' min = ', num2str(minval),' max = ', num2str(maxval),' mean = ', num2str(meann),' stdDev = ', num2str(stdval),' var = ', num2str(varr),' uncertainty = ', num2str(unc),' abdev = ', num2str(abdev)] %filterout = [filterout; string,num2str(depscale),num2str(depint)] valaccume = [valaccume;allvals]; if winplus && winminus ~=-1 clear ct clear slope_polyfit clear y clear x clear intercept_polyfit return end end delete dfile fclose all %==End of do the meat %======================================================================== %==Creat the output file done by bscalcloop function t = tval(p,df) %adapted from Peizer & Pratt JASA, vol63, p1416 %computes t-statistic val %there are tables to verify t = 0; clear a positive = p >= 0.5; if p>0 p = 1.0 - p; else p = p; end if (p <= 0.0 || df <= 0) t = 999; elseif (p == 0.5) t = 0.0; elseif (df == 1) t = 1.0 / tan((p + p) * 1.57079633); elseif (df == 2) t = sqrt(1.0 / ((p + p) * (1.0 - p)) - 2.0); else ddf = df; a = sqrt(log(1.0 / (p * p))); aa = a * a; a = a - ((2.515517 + (0.802853 * a) + (0.010328 * aa))/(1.0 + (1.432788 * a) + (0.189269 * aa) + (0.001308 * aa * a))); t = ddf - 0.666666667 + 1.0 / (10.0 * ddf); t = sqrt(ddf * (exp(a * a * (ddf - 0.833333333) / (t * t)) - 1.0)); end if t>0 t=t; else t=-t; end
back to C-OPS/CERBERUS Mfiles